Graphs and Path Equilibria
نویسنده
چکیده
The quest for optimal/stable paths in graphs has gained attention in a few practical or theoretical areas. To take part in this quest this chapter adopts an equilibrium-oriented approach that is abstract and general: it works with (quasi-arbitrary) arc-labelled digraphs, and it assumes very little about the structure of the sought paths and the definition of equilibrium, i.e. optimality/stability. In this setting, this chapter presents a sufficient condition for equilibrium existence for every graph; it also presents a necessary condition for equilibrium existence for every graph. The necessary condition does not imply the sufficient condition a priori. However, the chapter pinpoints their logical difference and thus identifies what work remains to be done. Moreover, the necessary and the sufficient conditions coincide when the definition of optimality relates to a total order, which provides a full-equivalence property. These results are applied to network routing.
منابع مشابه
Efficient Local Search in Coordination Games on Graphs
We study strategic games on weighted directed graphs, where the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy augmented by a fixed non-negative bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. Prior work shows that the problem of determining the existence...
متن کاملA Graph-Theoretic Network Security Game
Consider a network vulnerable to viral infection, where the security software can guarantee safety only to a limited part of it. We model this practical network scenario as a non-cooperative multiplayer game on a graph, with two kinds of players, a set of attackers and a protector player, representing the viruses and the system security software, respectively. Each attacker player chooses a nod...
متن کاملEquilibrium Flows and Path Dilation for a Network Forwarding Game
We consider a forwarding game on directed graphs where selfish nodes need to send certain amount of flow (packets) to specific destinations, possibly through several relay nodes. Each node has to decide whether to pay the cost of relaying flow as an intermediate node, given the fact that its neighbors can punish it for its non-cooperation. In this work we simplify the original network model, an...
متن کاملDetour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملWardrop Equilibria and Price of Stability for Bottleneck Games with Splittable Traffic
We look at the scenario of having to route a continuous rate of traffic from a source node to a sink node in a network, where the objective is to maximize throughput. This is of interest, e.g., for providers of streaming content in communication networks. The overall path latency, which was relevant in other non-cooperative network routing games such as the classic Wardrop model, is of lesser c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008